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LE'ITER TO THE EDITOR 

The full set of c,-invariant factorized Smatrices 

N J MacKayt 
Department of Mathematical Sciences, University of Durham, Durham, DHI 3LE, UK 

Received 8 July 1992 

Abstract. We use the method of the tensor product graph to constmct rational (Yangian 
invariant) solutions of the Yang-Baxter equation in fundamental representations of e. and 
thence the full set of c.-invariant factorized S-matrices. 

Integrable quantum field theories in 1 + 1 dimensions are expected to have exact 
S-matrices in which particle number and the set of asymptotic momenta are conserved, 
and in which multi-particle interactions factorize into products of two-particle inter- 
actions. The condition that this factorization be consistent is then the Yang-Baxter 
equation (YBE), $0 that in theories with a global Lie group invariance, such as the 
principal chiral model, the S-matrices are constructed from group-invariant solutions 
of the YBE. The spectrum of the theory then consists of multiplets within which the 
particles have equal mass and which form representations of the group G. 

One method for constructing these S-matrices is the bootstrap procedure (known 
as the 'fusion procedure' for solutions of the YBE) in which, at appropirate poles, 
intermediate states of the S-matrix are identified as particle states whose S-matrices 
can then be constructed. An altemative method is to construct explicitly the action of 
the underlying charge algebra on particle multiplets, and then use conservation of 
these charges to deduce the S-matrix. It has become clear [l] that this algebra is 
precisely Drinfeld's Yangian [2] Y ( d ) ,  where SA is the Lie algebra of the group G: 
if we write the action of the charges on states consisting of two asymptotically free 
particles as A, there is a local charge satisfying 

[Q;, Q,"] = ihFb'Q; and A(Qo") = Q,"O 1 + 1OQO" (1) 

wherepk are the structure constants of d, and a series of non-local charges, the first 
of which satisfies 

[Qo", @ I =  ihFb'Qf and A(@) = @O1+ 1 0 Q P + i p k Q ; B  0,". (2) 

The requirement that A be a homomorphism (i.e. that asymptotic states carry representa- 
tions of the charge algebra) fixes$ 

(3) aPPi bqj crk Uk ( p  q r )  F a b [ Q ; ' ,  Q:] = (ihj12)f f f f 0 0  QoQo 

where [ ] and ( ) denote (anti-)symmetrization on the enclosed indices. 

t Address from I August 1992: RIMS, Kyoto University, Kyoto 606, Japan. 
$ For d # d ( 2 ) .  For the general condition see Drinfeld [Z]. 
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This charge algebra provides a dynamical symmetry since it does not commute 
with the Poincare group: if the rapidity (defined by p = ( m  cosh e, m sinh e)) of a state 
is given a Lorentz boost L, of rapidity e, it is found that 

(4) 
hCAd' Qo" ++ Qo" and Qf ++ QP -e eQ0" 

where =p"~'" gives the value of the quadratic Casimir operator C, = Q;Q; 
in the adjoint representation. The S-matrix is thus constrained by conservation of Q; 
and Q:, so that the interaction S( 8, - e,) of two particles of rapidities e, and e2 satisfies 

(5) 

(6) 

[S(& - e,), Q;O 1 + lOQ;I=O 

s(f4 - ed(LoLOL,,A(QP)) = (&@b,A(Qf))s(et - e,) 
which together imply the Yang-Baxter equation 

(s(e,- e , )@i) (~~s(e , -e , ) ) ( s (e ,  -e2 )01 )  

= (i@s(e, - e,))(s(e,- e,)oi)(i@s(e,-e,). 
This acts on a state consisting of three asymptotically free particles of rapidities e,, 
0, and 03,  with each factor giving an interaction between two of the three particles. 
The S-matrix is related to the usual Yangian R-matrix by S = PR, where P transposes 
states in a tensor product. 

The particle multiplets of the theory are then irreducible representations of Y(&)  
which may or may not be irreducible as representations of the Lie subalgebra &, (1). 
In particular, an irreducible representation V of & may be extended to a representation 
U of Y ( d ) ,  with 

pu(Qo) =pv(Qo) and P,(QI) = O  (7) 

provided the action of the right-hand side of (3) vanishes on V,  and Drinfeld classified 
those V for which this is true [Z]. In particular, it is true of all the fundamental 
representations of an and c., but of only a few of the fundamental representations of 
other algebras. Since we expect the particle multplets to be fundamental representations 
of Y ( & )  (i.e. those representations of Y ( d )  containing a fundamental representation 
of & as a component), we therefore have an explicit action of the charge algebra on 
all the particle multiplets of the a. and c. theories: the charges have action (7) on 
particles of zero rapidity, boosted by (4) on a particle of rapidity 0. 

A method then exists [3-51 for solving (5). (6). For full details we refer the reader 
to the original papers, but in brief one first uses the group invariance ( 5 )  of S(0) and 
Schur's lemma to give, for irreducible &-representations X and Y where X@ Y 
contains no multiplicities, 

where the Pw project onto irreducible components of X O  Y.  We next use 

$[C,, 10Q,"l=fbcQ;@QOb 

and projecton the left and right of (6) with PK and Ps to obtain 

T s ( U )  B+Ans 
%(U) 8 - A R s  
-=- 
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where 

for those R, S which have opposite panty in X O  Y and for which RcadjointOS. 
This system of equations is made most transparent by letting the components of XO Y 
be the nodes of a bipartite graph, joined by directed edges R + S labelled with the 
differences of the Casimir operators when there is a corresponding equation (8). That 
the system is consistent is then equivalent to the requirement that the set of labels on 
the edges be the same for all paths between two nodes of the graph. As expected from 
Drinfeld's results, this is found to be the case for all the fundamental representations 
of a. and c.. The solutions for the a. case were obtained by Kulish et a/ [3] using 
both the fusion procedure and a method similar to this, but for c. only a few solutions 
have been found: with the fundamental representations of c, labelled by .-. . . . P 

1 2 3 n - 2  n - 1  n 

the bootstrap procedure has been used [4] to construct 5',,(9) starting from the &,(e) 
previously calculated [6] .  However, we can now construct the full set &,(e) using the 
tensor product graph (TPG), which for /Om, / a m  is 

+ A t + m - n + A ~  + A,+, , , . + . . . A i + L  + & + ~ + A , , - I  

1 1 1 1 
A , . , + A m - , -  A,+&,-> " .  + . . .  - A!+,,-> 

1 J 1 
Am.m+Am-z  + A n - m + , + A m . r - l " .  + h2.-l-, 

i 1 - *,-",+2 

1 
A$-m 

where the representations are indicated by their highest weights, given in terms of the 
fundamental weights A;, and A o =  0 indicates a singlet. (In addition, to keep the graph 
simple, the labels have been left out.) For I+ m > n the graph truncates at the ( n  - I +  
1)th column, since the representations to the right of this column in the graph are then 
no longer present in the decomposition of / O m .  

The S-matrix is then given by 
Min(n-1.m) m--p 

p=a U-0 
s l m ( e ) = p s ; m ( @ )  1 'A,+,.,+A -.". e ( g ) p A t + p . v + A  --". ~ (9) 

where 
n 

9+xi?rjh 
9 -x ia jh  

[X I '  and h = 2 n + 2 .  
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In (9) ,  sl,(0) is an overall scalar factor which cannot be determined from the TPG. 

However, we can fix sl l (0)  to an overall CDD ambiguity by requiring that &,(e) be 
unitary and crossing-symmetric. A solution that achieves this in such a way that &,(e) 
has no poles in the physical strip 0 s  Im 0 =Z TI is [4] 

Instead, however, we assume some bound state structure and choose a solution [4] 
which has a positive residue (direct channel) simple pole at e = 2iv/ h corresponding 
to the particle fusion 11 + 2, which is possible because at this value of 0 the S-matrix 
projects oniy on to the 2-component of 1 @ l-as can easily be seen from the TPG for 
1 0 1  

where we have used the notation 171 

sinh(0/2+im/2h) 
sinh( 0/2 - i rx/2h)’  

(x) = 

In principle, we could now have deduced all the S,,(0) from &,(e) using the bootstrap 
principle, which implies that 

s,,(e) =(los,,(e+ie~’,))(s,,(e-ie~)@l)l, 
where e= TI-0 and 1, indicates the restriction of the tensor product I O m  to state r, 
or, schematically, 

t 
m I 
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whenever Sl,(B) has a positive residue simple pole at io;, with residue proportional 
to r c IO m. However, in practice the calculations, which involve complex computations 
in Brauer's algebra (the centralizer algebra of e.) are too complicated; we must instead 
use the TPG to give the matrix structure. However, we can use the bootstrap to determine 
the scalar factors slm(0). We then have 

sl,(e) = Xl, , , (e)kl , (~)  (11) 

where 

and the XI,,,, which give all the pole structure of the S-matrices, have in fact already 
been calculated in the context of purely elastic scattering theories (in which the particles 
do not form multiplets), where they are related to d!,?, affine Toda theories 171: 

step 2 

Thus the complete set of Sl,,,(e) is given by substituting (10) and (11)-(13) into (9). 
Since the matrix structure of SI,  has been found by a method other than the 

bootstrap, it is worth examining how the bootstrap would work for our solutions. As 
in the S,, case, we can look at the TPG for I O m  and, seeing that the representations 
I -  m and (for I+  m s n ) l +  m are connected to the rest of the graph by a single edge 
whose label is valued in the physical strip, we expect SI,,, to have bootstrap poles 
corresponding to these fusings. This is indeed what we find: such fusings correspond 
precisely to the positive residue simple poles in  XI,, and the bootstrap procedure on 
these poles thus closes on the expected spectrum of n massive multiplets. This corres- 
pondence is really quite remarkable-facts about solutions of the YBE are being 
predicted by the bootstrap structure of scalar functions XI,,,. We can think of the 
fusings as being due to a three-point coupling between the particles I, m and I+ m with 

I+ m h - I  h - m  
h 

el;" =- P el,,, =- P e;",,,=- P 
h h 

I and then the fact that Of:"+ el+,,,, + = 27r is a highly non-trivial consequence of 
Yangian representation theory, proved only in the very special case of a three-point 
coupling between identical particles [8]. 

There is, however, a subtlety in that there are also positive residue cubic poles in 
XI, (e) for which the residue of SI,,,( e)  does not correspond to a fundamental representa- 
tion or indeed to any subgraph of the TPG. We therefore expect that such poles should 
not be interpreted as bootstrap poles, yet we know from affine Toda theories [7] and 
the d4 Yangian-invariant theory [9] that such poles can mask simple poles in particle 
states and thus form part of the bootstrap. Thus, at present, we are forced to fall back 
on the postulate that the spectrum of the theory consists only of particles in fundamental 
representations of the Yangian. It would therefore be nice to have an independent, 
quantum field theoretic way of deducing whether or not a given non-simple pole in 
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&,,(e) should be included in the bootstrap. Whereas in affine Toda theories direct 
comparison with perturbation theory is possible [71, for models with multiplet structure 
(such as the principal chiral model) matters are more complicated, and methods such 
as the (I/N)-expansion do not seem promising. 

The spectrum of masses in the theory can be deduced from conservation of 
momentum at bootstrap poles, and for the e. theories has been deduced [4] from S,,( e): 

mp = m s i n e )  p = l , .  . . , n 

An interesting alternative way of deducing the values of the bootstrap poles and thus 
the mass spectrum has been proposed recently by Belavin [IO] and used by him to 
compute the a, mass spectrum. He considered the two commuting conserved charges 
Q)Q;(=C,)  and Q7Q; and applied the bootstrap principle: if the residue of a pole 
of St,,,(@) is a particle state r then 

Using the coproducts ( I ) ,  (2) and the representation (7), and setting 8, =0, it is then 
possible to deduce the value of io;, = 8, - 0, : 

where we have written C, (p ) .  When we apply this method to the c. case we obtain 
the expected fusing angles (14) and thus (15); Belavin’s method also works in this 
way for all particle multiplets (for any d) which are irreducible as representations of d. 

If we wish to develop the methods discussed in this letter as an alternative to the 
bootstrap procedure.for calculating factorized S-matrices for general d, it is clear that 
new results on representations of Yangians are neededt: both the TPG and Belavin’s 
method depend crucially on the explicit action (7) of Q; and Qf on the particles. 
Apart from U =  V, the only case for which such an action is known is Drinfeld’s 
construction [Z] of U = adjointOsinglet; the corresponding R-matrices have been 
constructed by Chari and Pressley [8], although it is not clear how to extend Belavin’s 
method to this representation. 

Finally, it seems that neither the bootstrap (which describes the decomposition of 
tensor products of Y ( d )  representations) nor the methods [ 5 ,  81 for solving (6) give 
any general insight into the mass spectra and fusings obtained. Since, as we mentioned 
above, much information about the YBE is already contained in the X,,,,, and since the 
mass spectra and fusings given by the XI,,, have a beautiful description in terms of 
root systems of Lie algebras [I21 (at least for simply-laced d; for non-simply-laced 
d the situation is more complicated), it therefore appears that there is every prospect 
of rich undiscovered structure in the representation theory of the Yangian. 

NJM acknowledges financial support under a UK SERC Studentship. 

t At this point we should note that recent results [ I l l  on off-shell, infinite-dimensional representations of 
dynamical .Yangian symmetry do not seem to help with this. 
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